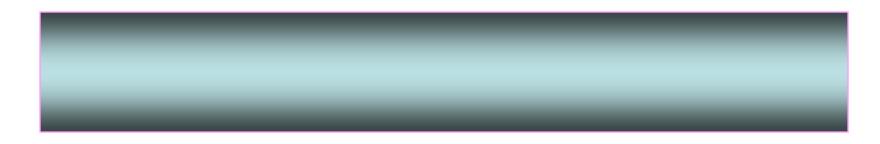

GRDSS: Development and Applications


Uttam Kumar and Ramachandra T. V.
Centre for Ecological Sciences,
Indian Institute of Science,
Bangalore – 560012.

Geoinformatics FCE CTU 2009 - Free and Open Source Software in Geoinformatics - 17-18 Sep 2009, Prague, Czech Republic

GRDSS: Journey in 2003

GRDSS in 2004

Vector

Point

Model

Databases

Raster

Image Processing

Geographic Resources Decision Support System

GRASS Mirror site: http://wgbis.ces.iisc.ernet.in/grass http://144.16.93.203/grass email: grass@ces.iisc.ernet.in

Beta version - GRDSS3.1

File

Display

Developed at: Energy and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore - 560012, India.

- 0 X

Help

Welcome to Free & Open Source Software (FOSS) at CES, IISc, Bangalore, India

Home
GRASS Mirror site in India

GRDSS

Geovisualisation

What is FOSS ?

FAQs

Scripting Language

Open Web Server

Open Source Database

Open Content Management System

Open Source Libraries

Statistical Softwares

GIS Softwares

Useful Softwares

List of Free Software

Free Operating Systems

Linux Command Help

FOSS by OSGeo-India

FOSS Foundation

FOSS Group

Contact Us

Energy Research Group

Centre for Ecological Sciences

Indian Institute of Science

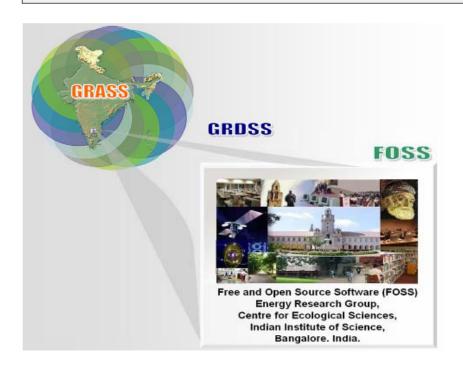
Search

Visitors: 21265

Home

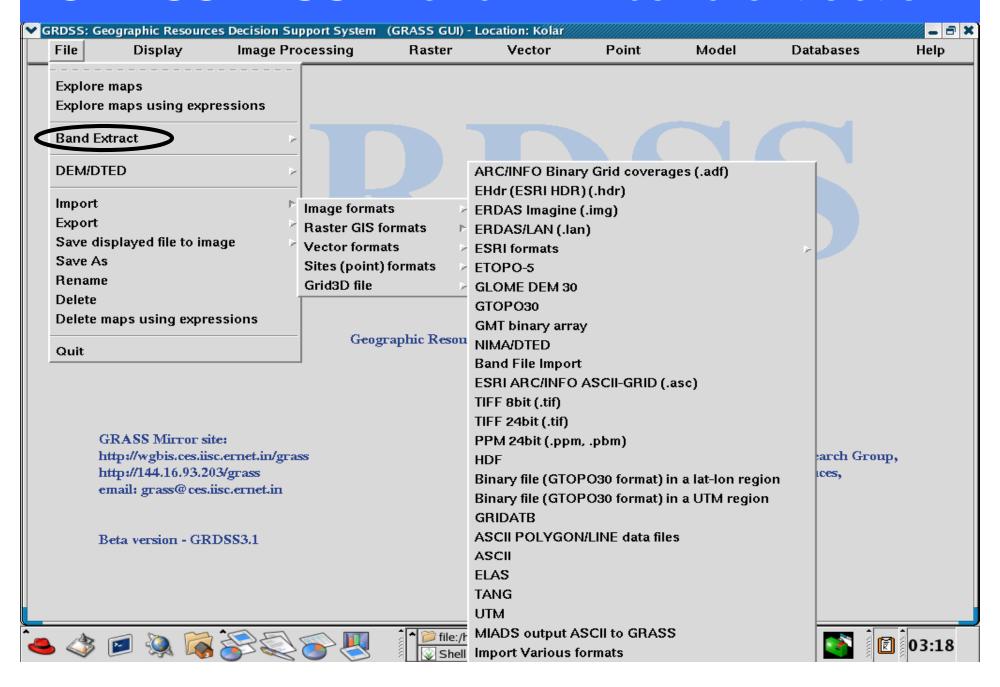
Geographic Resources Analysis Support System

Geographic Resources Decision Support System


E-mail

GEOVISUALISATION OF CHERUVANNUR VILLAGE PANCHAYAT, KOZHIKODE, KERALA, INDIA

Open Source GIS in India, Discussion Meeting, 16th November 2009, CiSTUP, IISc



Development

- FOSS website
- Band extraction modules in GRDSS LISS III and PAN
- Image fusion modules HIS, Brovey, High Pass Filter, High Pass Modulation, Principal Component Analysis, Fourier Transform, Atrous, MRAIM, Gram Schmidt, CN Spectral, Luminance Chrominance
- Forest fragmentation module Patch, Transitional, Edge, Perforated, Interior
- Urban fragmentation module Developed, Non-developed, Water, Infill, Expansion, Outlying growth

GRDSS: LISS III and PAN band extraction

NRSA information Help

MRSA (National Remote Sensing Agency)

MRSA (National Remote Sensing Agency) at Hyderabad is a Department of Space sponsered organisation, that is engaged in carrying out satellite and airborne remote sensing activities including aerial photogramphy, digital photogrammetry, and nicrowave remote sensing, etc. The wain objective of MRSA is the acquisition, processing and dissemination of Remote Sensing data.

Indian Renote Sensing Satellites

Indian Remote Sensing Satellites (IRS-1R, IRS-1B, IRS-1D and IRS-1D) has strengthened the scope of Remote Sensing capabilities of India. IRS-1D and IRS-1D data is received at the earth station of NRSA, Myderabad and then supplied to users on request. IRS-1D has three cameras: (1) a Panchromatic camera (2) a Linear Inaging Self-Scanning Sensor - III (LISS-III) (3) a Nide Field Sensor (Nifs)

DATA REQUEST FROM NRSA

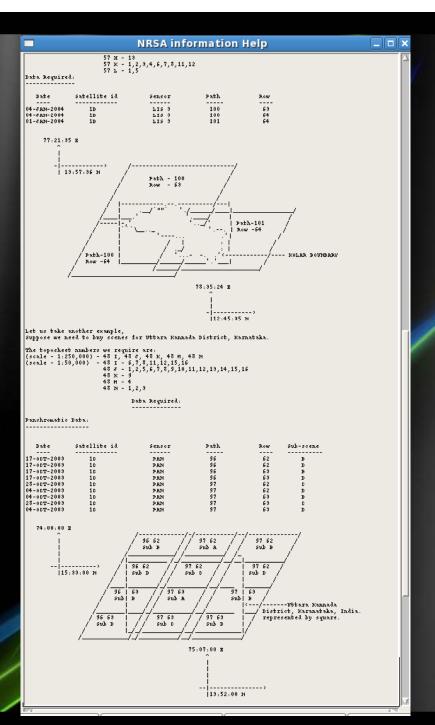
Data from Integrated Information Management System (IIMS) at 106SA Data Dentre (100D) provide services to the users of the satellite images. 106SA data request can be made in three ways:

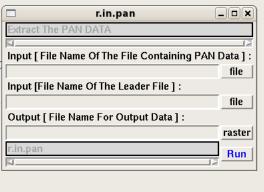
- In three ways:

 1. Digital browse facility LISS-III and PAN images are generated and compressed after acquisition and transferred to NDD (NASA Data Bentre) in optical jukebox. Based on user input, the requested data is retrieved from the jukebox, decompressed and displayed with the Digital browsing facility.
- Referencing scheme maps- Reference scheme maps are generated with path/row and scene centre marked on a baseline map to assist users in identifying the area of interest. The referencing scheme map for IRS-10 is provided to users in three different types:

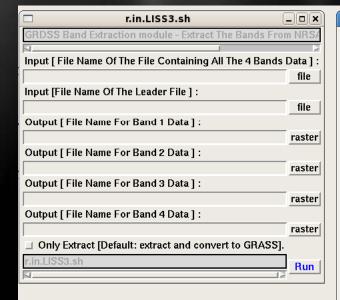
 - for India and neighbouring countries on 1: 6,000,000 scale,
 six zones of India, viz. Central, North, South, East, West and Andanan and Micobar on 1: 4,500,000 scale and
 the entire coverage of Ryderabad earth station.
- Orbital Calendar Orbital Calendar, giving the datails of paths covered on different days, is useful to users to plan their procurement of satellite data products. It is possible to know, on which day the required data have been collected as are going to be collected.

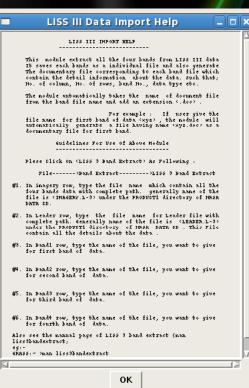
Typical IRS-18 orbital calender Path number 9 Path number

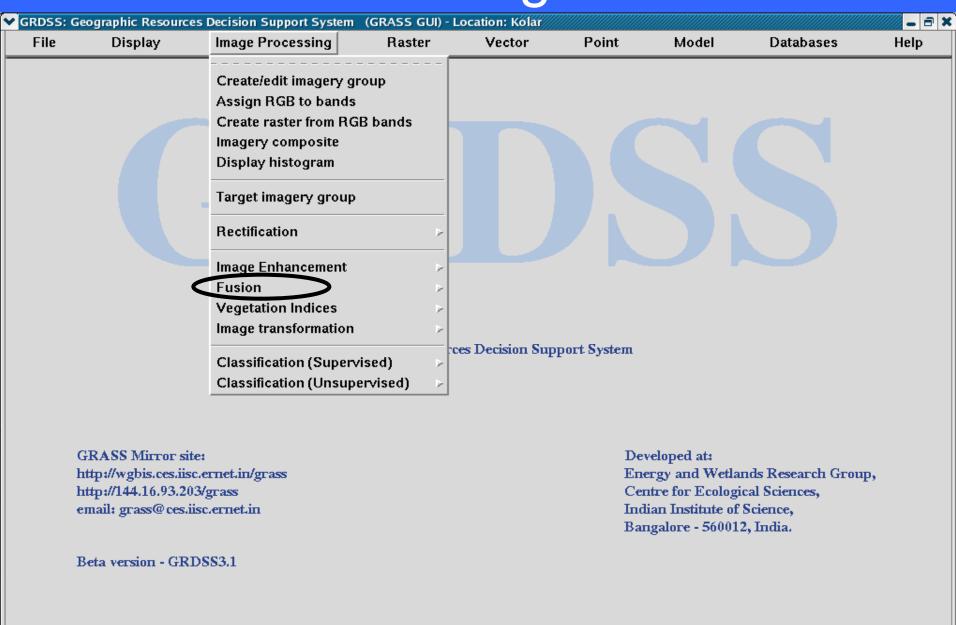

1 318 294 270 246 222 138 174 150 126 102 78 54 30
6 323 299 275 251 227 203 178 155 131 107 83 59 35
11 328 304 280 255 232 208 184 160 136 112 88 64 40
16 333 309 285 261 237 213 183 165 141 117 93 69 45
21 338 314 285 266 242 218 134 170 146 122 98 74 50 31
7 324 300 271 252 228 204 180 156 142 117 93 69 55 31
7 324 300 271 252 228 204 180 156 132 108 84 60 36
12 329 305 276 257 233 209 185 161 137 13 89 65 41
17 334 310 281 262 238 214 180 156 132 108 84 60 36
12 329 305 276 257 233 209 185 161 137 13 89 65 41
17 334 310 281 262 238 214 180 156 132 108 84 60 36
12 329 305 276 257 233 209 185 171 147 123 99 75 51 2
3 320 296 291 248 224 200 176 152 128 104 80 56 32
13 335 301 272 253 229 205 181 157 133 109 85 61 37
13 330 306 282 258 234 210 186 162 138 114 90 66 42
18 335 311 287 263 239 215 191 167 143 119 95 71 47
23 340 316 282 258 234 210 186 162 138 114 90 66 42
18 335 311 287 263 239 215 191 167 143 119 95 71 47
23 340 316 292 268 244 220 196 172 148 124 100 76 52 2
18 325 301 272 243 225 201 177 153 129 105 81 57 33
19 326 302 278 254 230 206 182 158 134 110 86 62 38
19 326 302 278 259 259 211 187 193 193 15 91 67 43
19 395 312 287 289 269 240 210 182 158 134 110 86 62 38
19 395 312 887 259 235 211 187 183 194 110 86 62 38
19 395 312 287 259 229 211 187 189 139 15 91 67 43
19 395 312 287 259 229 211 187 189 139 15 91 67 43
19 395 312 287 259 229 221 1187 159 139 159 11 57 13 39
15 32 28 28 274 250 226 202 177 13 149 125 101 77 53 12
15 332 308 284 260 236 212 188 164 140 116 92 67 43
15 332 308 284 260 236 212 188 164 140 116 92 68 44
20 337 313 289 265 241 217 133 169 145 11 57 147 39
15 318 294 270 246 222 188 174 150 126 102 78 54 30 26 20 337 313 283 265 241 217 193 169 145 121 97 73 49 1 318 294 270 246 222 198 174 150 126 102 78 54 30


Indian users send their request details like area of interest, date/period of interest and sensor. The requests are studied and prioritized, depending upon the various factors. Nuc (MAGA Data Dentre) then sends the acquisition plan to spacecraft buntrel Dentre(SDD), where the necessary plans are worked out and after a successful acquisition of a pass, a scene is processed according to the user's requirements and delivered to the user.

For more information log on to: Postal address:


http://www.nrsa.gov.in Mational Remote Sensing Agency, (Dept. of Space), Sout. of India), Balanagar, Myderabad-500037.


0K



GRDSS: Image Fusion

RGB-HIS Fusion

RGB bands are transformed to HIS (Carper et al., 1990)

(hue – dominant or average wavelength of light contributing to a colour, intensity – total brightness of the colour, saturation – purity of colour relative to gray)

$$\begin{pmatrix} DN_{PAN}^{l} \\ V_{1} \\ V_{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & 0 \end{pmatrix} \begin{pmatrix} DN_{MS1}^{l} \\ DN_{MS2}^{l} \\ DN_{MS3}^{l} \end{pmatrix}$$

where DN_{MS1}^l , DN_{MS2}^l , DN_{MS3}^l are the low resolution bands V_1 , V_2 are the intermediate variables.

Carper, W. J., Lillesand, T. M., and Kieffer, R. W., 1990, The use of Intensity-Hue-Saturation transformations for merging SPOT Panchromatic and multispectral image data. *Photogrammetric Engineering and Remote Sensing*, 56, 459-467.

RGB-HIS Fusion

$$I = DN_{PAN}^{l}$$
 $H = \tan^{-1}\left(\frac{V_2}{V_1}\right)$ $S = \sqrt{V_1^2 + V_2^2}$

I is replaced with high spatial resolution image – DN^{h'}_{PAN} (contrast stretched to I) which is to be integrated.

$$DN_{new_image} = rac{\sigma_{ref}}{\sigma_{old}}(DN_{old} - \mu_{old}) + \mu_{ref}$$

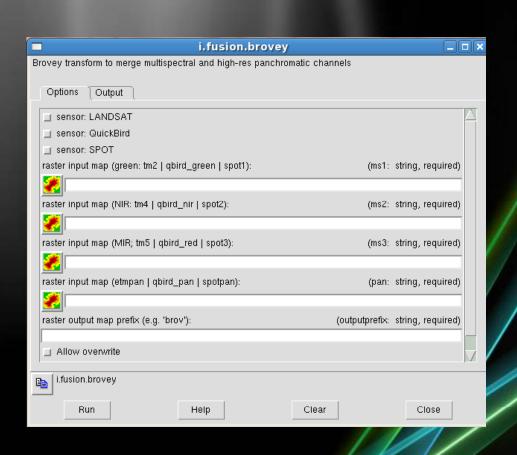
$$\begin{pmatrix} DN_{MS1}^{h} \\ DN_{MS2}^{h} \\ DN_{MS3}^{h} \end{pmatrix} = \begin{pmatrix} 1 & \frac{-1}{\sqrt{6}} & \frac{3}{\sqrt{6}} \\ 1 & \frac{-1}{\sqrt{6}} & \frac{-3}{\sqrt{6}} \\ 1 & \frac{2}{\sqrt{6}} & 0 \end{pmatrix} \begin{pmatrix} DN_{PAN}^{h'} \\ V_{1} \\ V_{2} \end{pmatrix}$$

where DN^{h}_{MS1} , DN^{h}_{MS2} , DN^{h}_{MS3} are the fused high resolution multispectral bands.

RGB-HIS Fusion

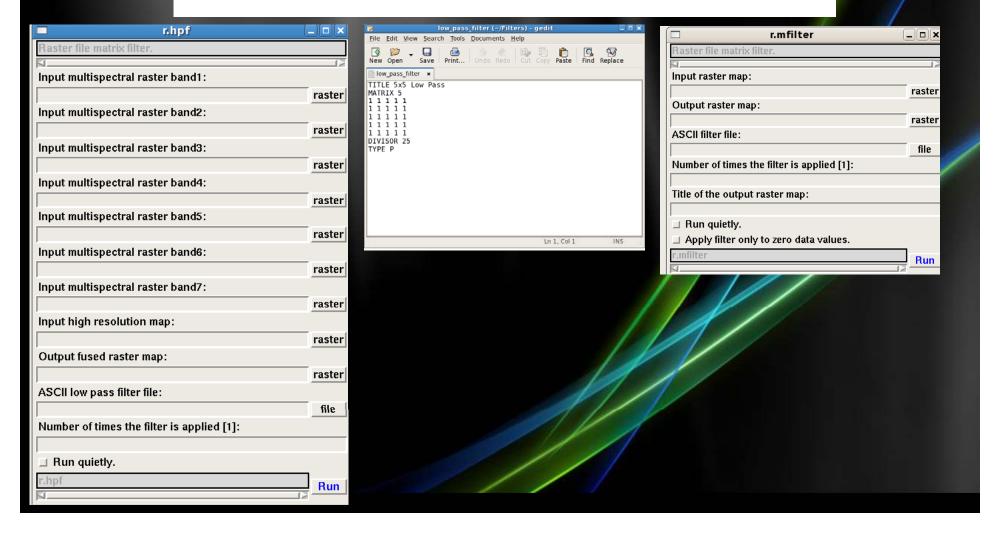
Brovey Fusion

$$\begin{pmatrix} DN_{MS1}^{h} \\ DN_{MS2}^{h} \\ DN_{MS3}^{h} \end{pmatrix} = \begin{pmatrix} DN_{MS1}^{l} \\ DN_{MS2}^{l} \\ DN_{MS3}^{l} \end{pmatrix} + \begin{pmatrix} DN_{PAN}^{h} - DN_{PAN}^{l} \end{pmatrix} \begin{pmatrix} \frac{DN_{MS1}^{l}}{DN_{PAN}^{l}} \\ \frac{DN_{PAN}^{l}}{DN_{PAN}^{l}} \\ \frac{DN_{MS3}^{l}}{DN_{PAN}^{l}} \end{pmatrix}$$


where

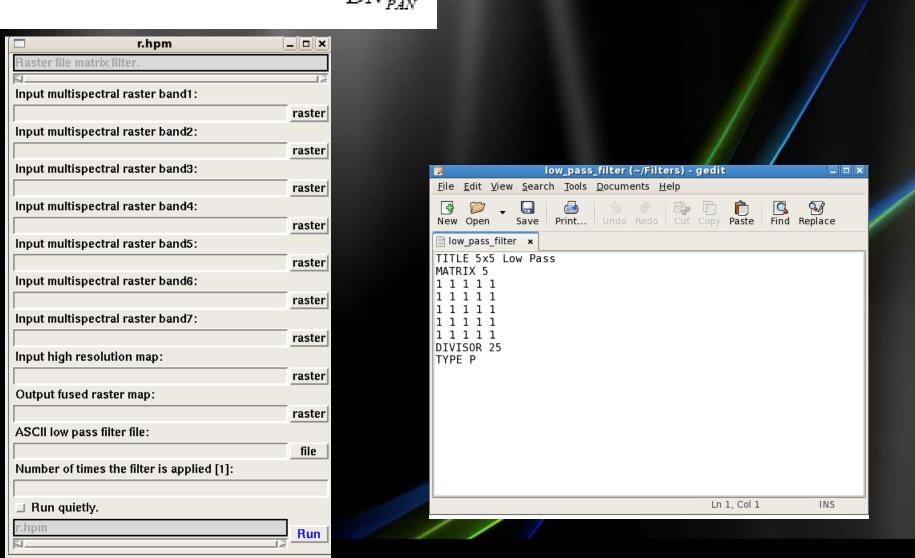
$$DN_{PAN}^{l} = (1/3)(DN_{MS1}^{l} + DN_{MS2}^{l} + DN_{MS3}^{l})$$

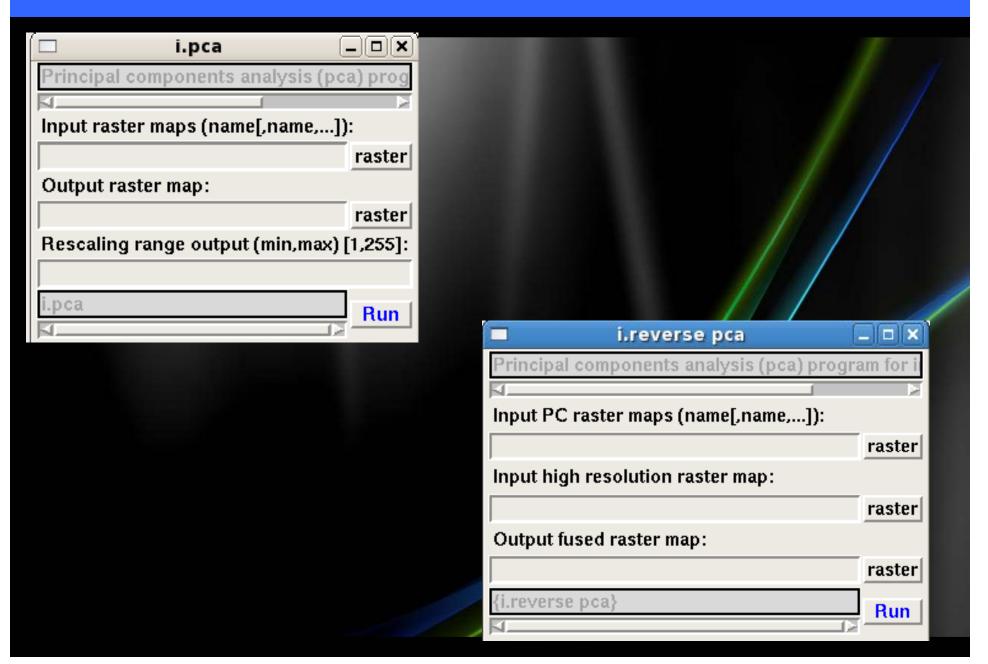
 DN^{h}_{MS1} , DN^{h}_{MS2} , DN^{h}_{MS3} are the low resolution bands DN^{h}_{MS1} , DN^{h}_{MS2} , DN^{h}_{MS3} are the fused high resolution multispectral bands


Pohl, C., 1996, Geometric aspects of multisensor image fusion for topographic map updating in the humid Tropics. ITC publication No. 39 (Enschede: ITC), ISBN 90 6164 121 7.

Brovey Fusion

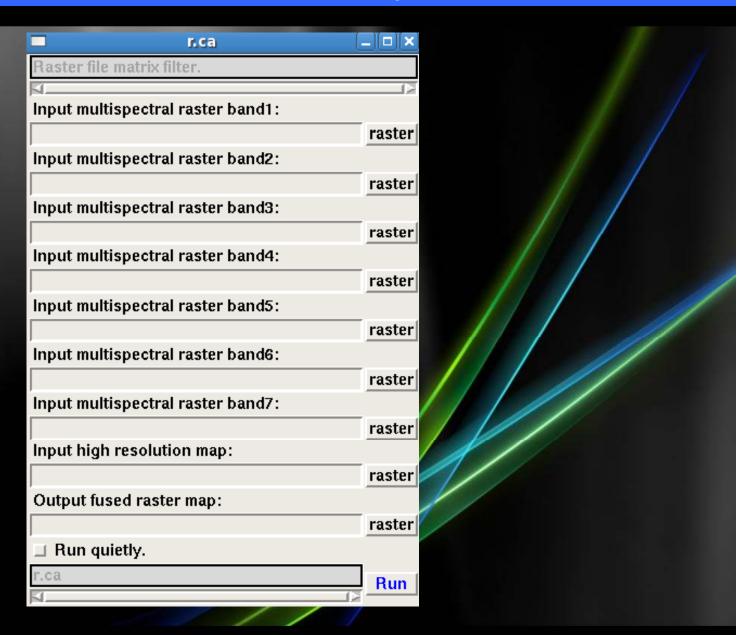
High Pass Filter Fusion


 $DN_{MSS}^h = DN_{MS}^l + (DN_{PAN}^h - DN_{PAN}^l)$ where $DN_{PAN}^l = DN_{PAN}^h * h_0$ and h_0 is a LP filter (average or smoothing filter).

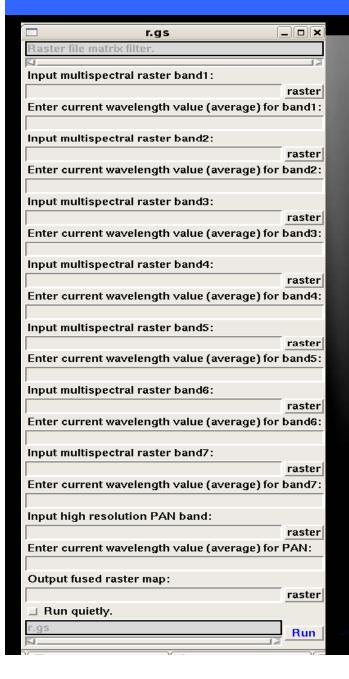

High Pass Modulation Fusion

where $DN_{PAN}^{l} = DN_{PAN}^{h} * h_0$ and h_0 is the same LP filter as used in the HPF method.

PCA Fusion


Fourier Transformation Fusion

$$MS_i^H = FT^{-1}\left\{LPF\left\{FT(MS_i^L)\right\} + HPF\left\{FT(PAN)\right\}\right\}$$


i.fft					
Fast Fourier Transform (FFT) for image proc	essing.				
N					
Input raster map on which the FFT is run:					
	raster				
Output real part arrays stored as raster map:					
	raster				
Output imaginary part arrays stored as rast	er map:				
	raster				
Range of values used during FFT:					
i.fft	Run				

i.ifft (
Inverse Fast Fourier Transform (IFFT)	for imag
KI	>
Input raster map for IFFT, real part:	
	raster
Input raster map for IFFT, imaginary p	art:
	raster
Output raster after IFFT:	
	raster
i.ifft	Run
N	

Correspondence Analysis Fusion

Gram Schmidt Fusion

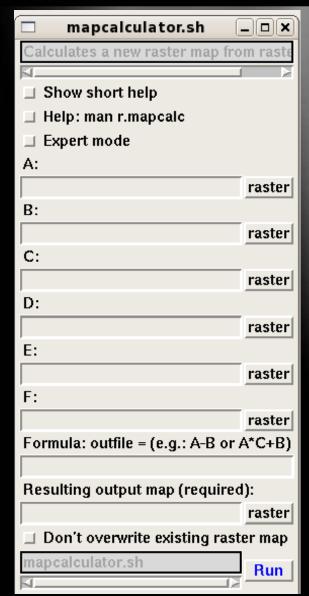
$$\begin{split} B_{wt} &= \int_{0.4}^{0.5} OT_B(\lambda) * SR_B(\lambda) * SR_{PAN}(\lambda) \mathrm{d}\lambda \\ G_{wt} &= \int_{0.5}^{0.6} OT_G(\lambda) * SR_G(\lambda) * SR_{PAN}(\lambda) \mathrm{d}\lambda \\ R_{wt} &= \int_{0.6}^{0.7} OT_R(\lambda) * SR_R(\lambda) * SR_{PAN}(\lambda) \mathrm{d}\lambda \\ NIR_{wt} &= \int_{0.7}^{0.8} OT_{NIR}(\lambda) * SR_{NIR}(\lambda) * SR_{PAN}(\lambda) \mathrm{d}\lambda \end{split}$$
 where OT is the optical transmittance, SR is the spectral

response and λ is the wavelength.

CN Spectral Fusion

$$MS_i^H = \frac{4(MS_i^L) \cdot PAN}{(\sum_i MS_i^L) + 4} - 1$$

where MS_i^H are the fused images, MS_i^L are the LR MS bands, PAN is a HR panchromatic band, and i = band 1 to band 7.


Luminance Chrominance Fusion

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} - \begin{pmatrix} 1.000 & 0.996 & 0.621 \\ 1.000 & -0.272 & -0.647 \\ 1.000 & -1.106 & -1.703 \end{pmatrix} \begin{pmatrix} Y \\ I \\ Q \end{pmatrix}$$

nic nic	
Raster file matrix filter.	
N	
Input multispectral raster band1:	
	raster
Input multispectral raster band2:	
	raster
Input multispectral raster band3:	
	raster
Input high resolution PAN band:	
	raster
Output fused raster map:	
	raster
☐ Run quietly.	
r.lc	Bun
N	2

GRDSS Map calculator

Results of different fusion techniques

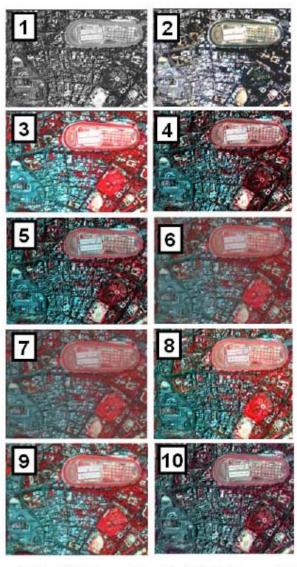
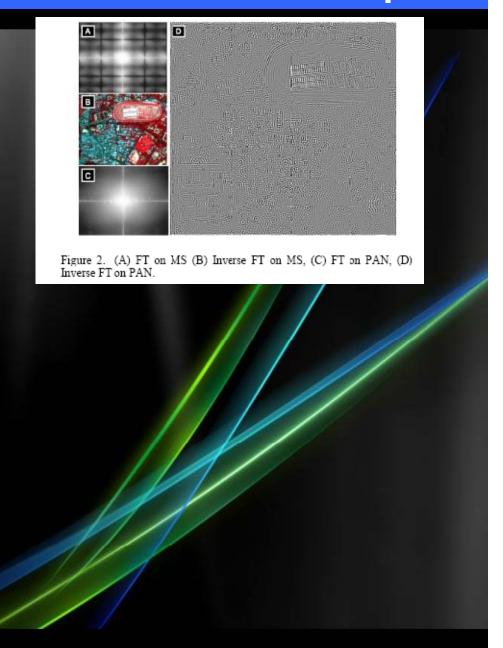
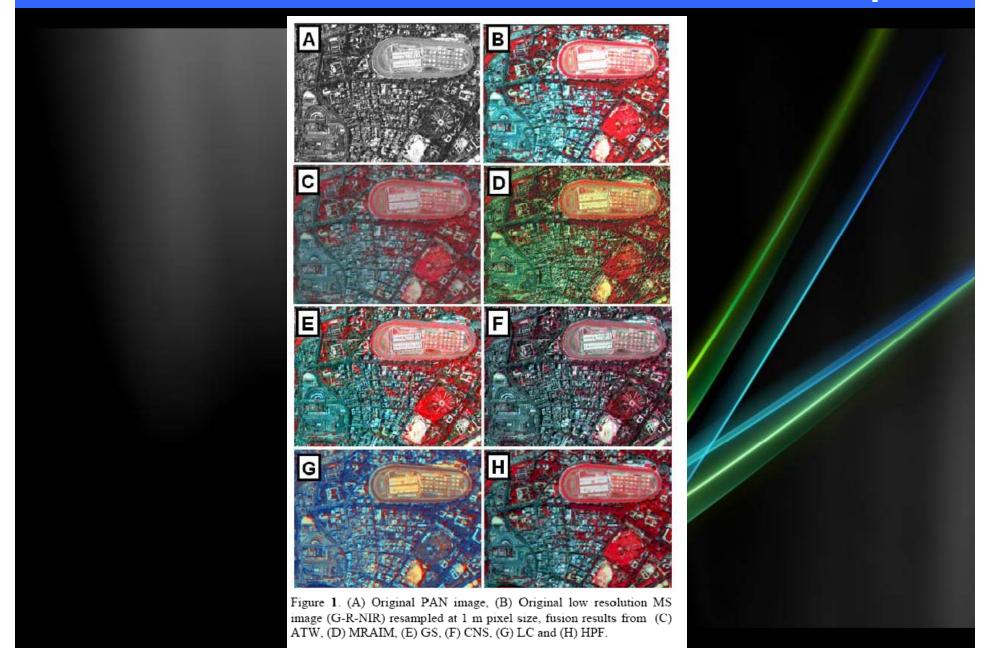




Figure 1. Original PAN image (1), original LR MS image (B-G-R) resampled at 1 m pixel size (2), original LR MS image (G-R-NIR) resampled at 1 m pixel size (3), Fusion through IHS (4), BT (5), HPF (6), HPM (7), PCA (8), FT (9) and CA (10).

Results of different fusion techniques

Validation

$$Q = \frac{\sigma_{AB}}{\sigma_{A}\sigma_{B}} \cdot \frac{2\mu_{A}\mu_{B}}{\mu_{A}^{2} + \mu_{B}^{2}} \cdot \frac{2\sigma_{A}\sigma_{B}}{\sigma_{A}^{2} + \sigma_{B}^{2}}$$

CC Closeness Similarity

TABLE 1. UIQI OF FUSED AND ORIGINAL IMAGE

	Blue	Green	Red	NIR
HIS	-	0.17	0.27	0.12
BT	-	0.89	0.97	0.54
HPF	0.85	0.94	0.96	0.98
HPM	0.83	0.94	0.97	0.95
PCA	0.68	0.63	0.63	0.46
FT	0.43	0.22	0.73	0.81
CA	0.27	-0.01	0.06	-0.00

TABLE 2. CORRELATION BETWEEN IKONOS HR PAN AND CORRESPONDING LR PAN IMAGES FROM DIFFERENT METHODS

IHS	BT	HPF	HPM	PCA	FT	CA
0.32	0.32	0.95	0.95	0.32	-	0.27
p value for all CC = 2.2e- 16						

Both IHS and BT are limited to 3 bands (G, R and NIR). IHS and BT use the same low resolution PAN image. HPF and HPM use the same low resolution PAN image. There is no generation of low resolution PAN in FT.

TABLE I. UIQI MEASUREMENTS OF THE SIMILARITY BETWEEN ORIGINAL AND THE FUSED IMAGES OBTAINED BY VARIOUS METHODS

	Blue	Green	Red	NIR
ATW	0.83	0.92	0.95	0.99
MRAIM	0.81	0.89	0.91	0.93
GS	0.49	0.44	0.46	0.43
CNS	0.12	0.29	0.43	0.43
LC	-	0.12	0.92	0.61
HPF	0.93	0.94	0.93	0.94

TABLE II.

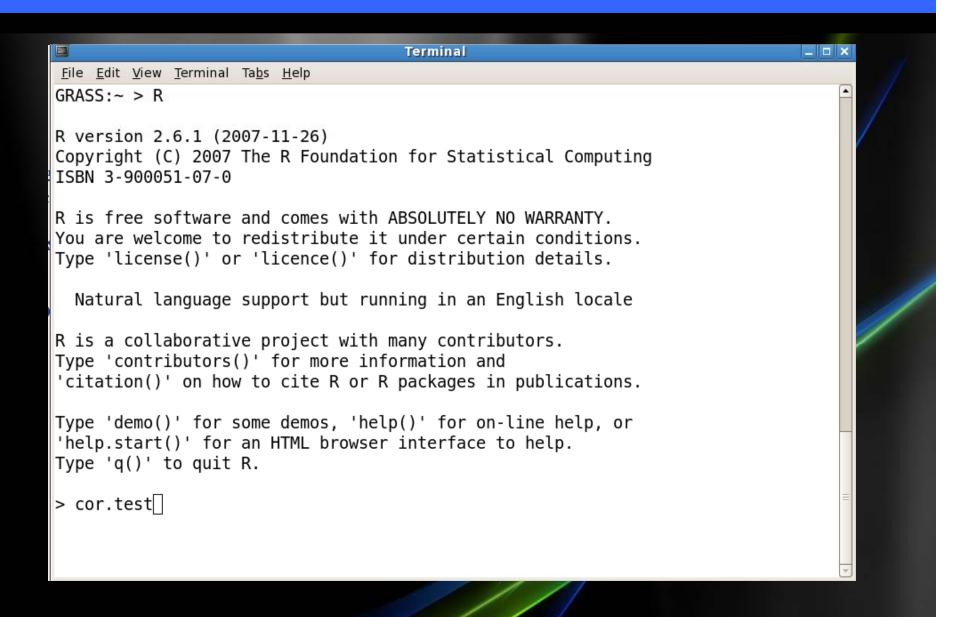
CORRELATION BETWEEN THE IKONOS HR PAN IMAGE AND THE CORRESPONDING LR PAN IMAGE BY DIFFERENT METHODS

ATW	MRAIM	GS	CNS	LC	HPF	
0.85	0.80	0.65	-	0.71	0.86	
p value for all CC = 2.2e-16						

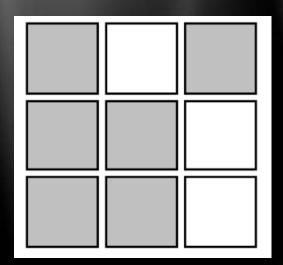
LC is limited to three bands (G-R-NIR combination).
PAN image was used in CNS without any transformation.

TABLE III.

EVALUATION OF ORIGINAL AND FUSED NIR BAND BY DIFFERENT METHODS


	UIQI	CC	Min	Max	Sd
Original NIR	1	1	195	811	87
Fused NIR (ATW)	0.99	0.98	125	867	88.5
Fused NIR (HPF)	0.94	0.99	152	650	68.1

GRDSS: Interface with R


- The R/GRASS interface substantially improves the geospatial analysis capabilities of GRASS.
- For the integration of R with GRASS, you need to run R from the GRASS shell environment.
- The interface dynamically loads compiled GIS library functions into the R environment.
- GRASS>R> R CMD INSTALL spgrass6_0.3-7.tar.gz
- For more details see:

OPEN SOURCE GIS
A GRASS GIS Approach
Third Edition
Markus Neteler & Helena Mitasova
Springer

GRDSS: Interface with R

- Forest fragmentation is the process whereby a large, continuous area of forest is both reduced in area and divided into two or more fragments (K. J. Ritters et al., 2000).
- For calculating forest fragmentation and its occurrence as adjacent pixels, fixedarea windows surrounding each forest pixel is used.

Pf equals 6/9=0.67

Total number of adjacent pixel pairs is 12, and of these, 11 pairs include at least one forested pixel. Five of those 11 pairs are forest-forest pairs. Pff equals 5/11 = 0.45

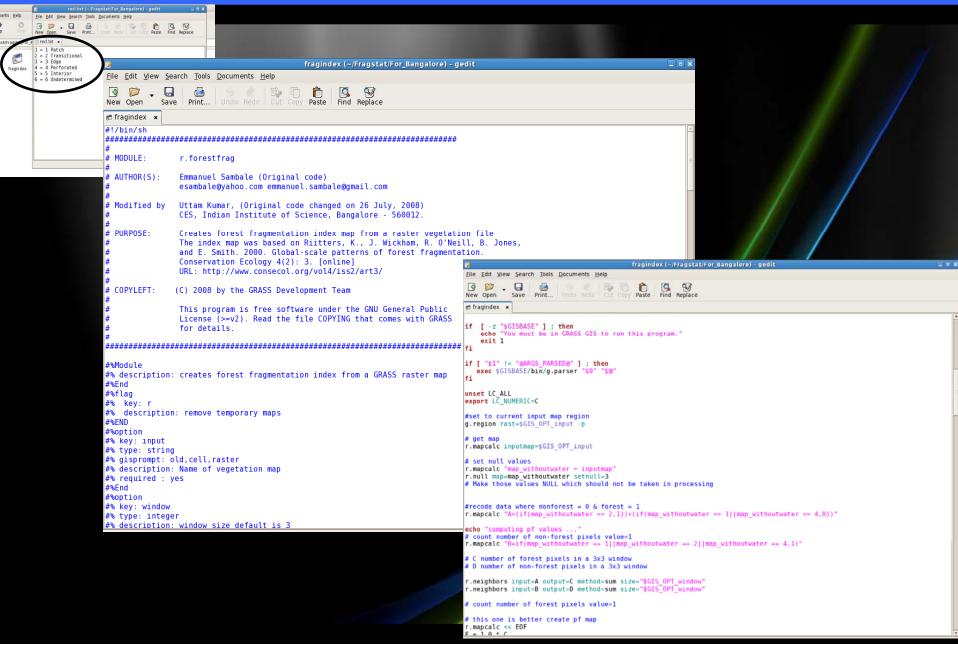
K. J. Riitters, R. O' Neill. Wickham, B. Jones, and E. Smith, "Global-scale patterns of forest fragmentation," Conservation Ecology, vol. 4, no. 2-3, 2000.

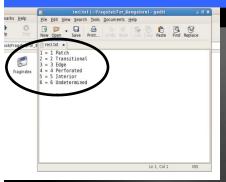
The six fragmentation model that identifies six categories are:

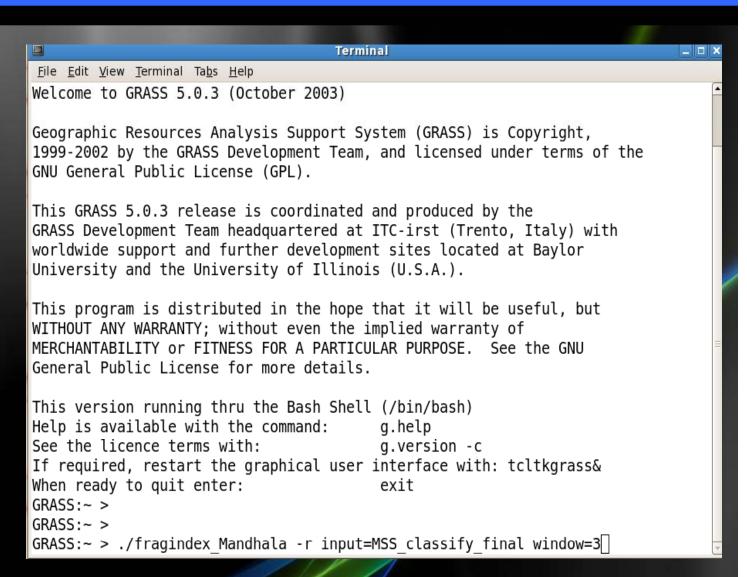
```
(1) Interior (Pf = 1.0)
(2) Patch (Pf < 0.4)
```

(3) Transtitional
$$(0.4 < Pf < 0.6)$$

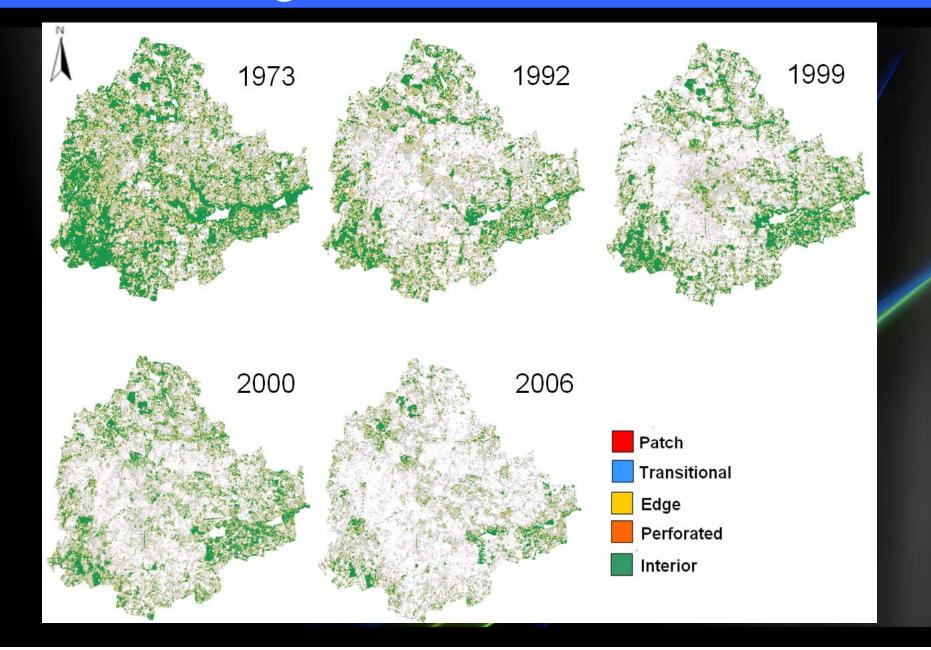
(4) Edge
$$(Pf > 0.6 \text{ and } Pf - Pff > 0)$$


(5) Perforated (Pf > 0.6 and Pf
$$-$$
 Pff < 0) and


(6) Undetermined
$$(Pf > 0.6 \text{ and } Pf = Pff)$$


$$TFP = \frac{total\ forest\ area}{total\ non - water\ area}$$

$$FC = \frac{weighted\ forest\ area}{total\ forest\ area} * \frac{area\ of\ largest\ interior\ forest\ patch}{total\ forest\ area}$$


WFA =
$$(1.0 * interior) + (0.8 * (perforated + edge + undertermined) + (0.5 + transitiojnal) + (0.2 * patch)$$

Forest fragmentation 1973 - 2006

Forest fragmentation

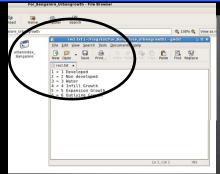
Forest Fragmentation Categories	1973		1992		1999		2000		2006	
	На	%	На	%	На	%	На	%	На	%
Patch	1120	2.45	1950	6.34	1788.6	5.91	1944	6.47	1810	9.57
Transitional	3789	8.28	4259	13.84	3816	12.62	3999	13.31	3956	20.92
Edge	14717	32.16	10709	34.81	9516	31.46	10593	35.25	6050	31.99
Perforated	1453	3.18	1447	4.70	1410	4.66	1219	4.06	1859	9.83
Interior	24675	53.93	12401	40.31	13715	45.35	12291	40.91	5236	27.69
Total	45756	100	30766	100	30244	100	30047	100	18909	100

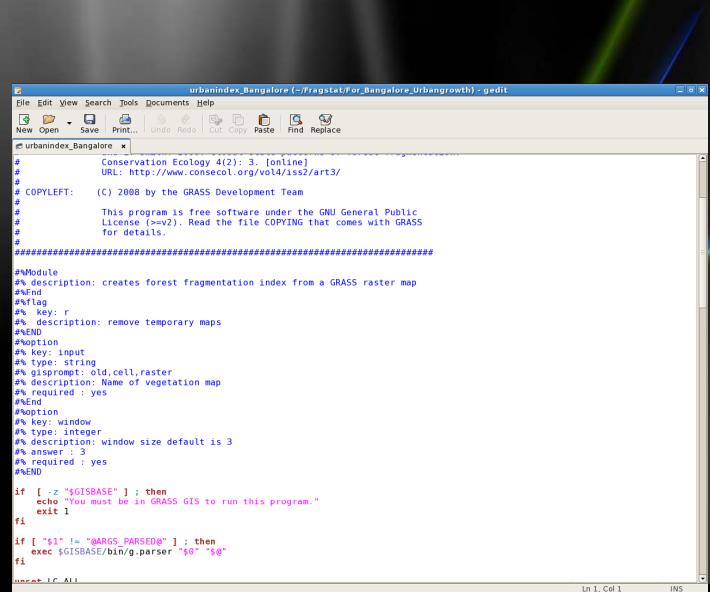
Total forest proportion and forest continuity

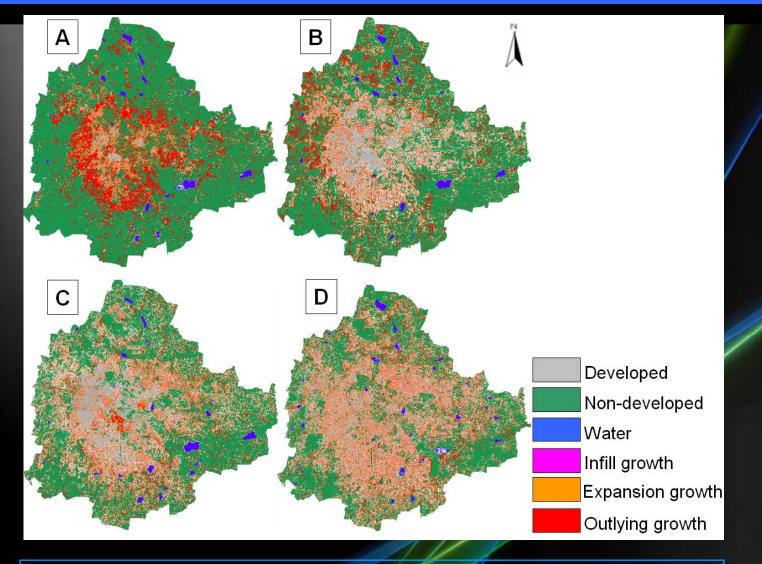
State of forest fragmentation index	1973	1992	992 1999		2006	
TFP	0.71	0.48	0.47	0.46	0.29	
FC	0.45	0.30	0.34	0.30	0.19	

- The urban growth model (D. L. Civco et al., 2002) uses multidates urban (developed) and non-urban (non-developed) classes.
- Interior all pixels in a 3 x 3 window are non-developed.
- Perforated when > 60 % and < 100 % of pixels in a 3 x 3 window are non-developed.
- Patch < 60 % of pixels in a 3 x 3 window are nondeveloped.

D. L. Civco, J. D. Hurd, E. H. Wilson, C. L. Arnold, and M. P. Prisioe, "Quantifying and Describing Urbanizing landscape in the Northeast United States," Photogrammetry Engineering and Remote Sensing, vol. 68, no. 10, pp. 1083 - 1090, 2002.

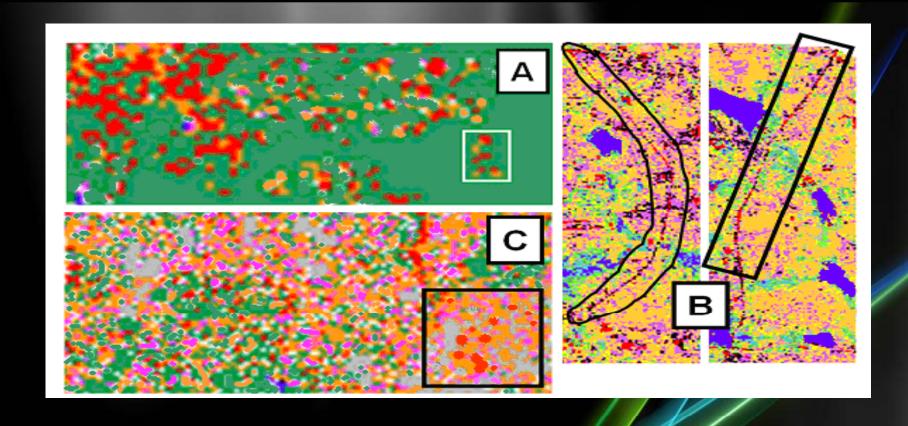

Significant Change Classes	Type of Growth					
Patch to Developed	inal Crowth					
Perforated to Developed	Expansion Growth					
Interior to Developed	Cullying Growth: Isolated, Linear Branching Clustered Branching Growth					


Infill - development surrounded by existing developed land.


Expansion - spreading out of urban LC from existing developed land

Outlying growth - interior pixel that changes to developed

- An isolated growth new, small area of construction surrounded by non-urban land and some distance from other seveloped areas.
- A linear branching growth is a road, confider, or linear development
- A clustered branching new, large and dense development in a previously undeveloped area.



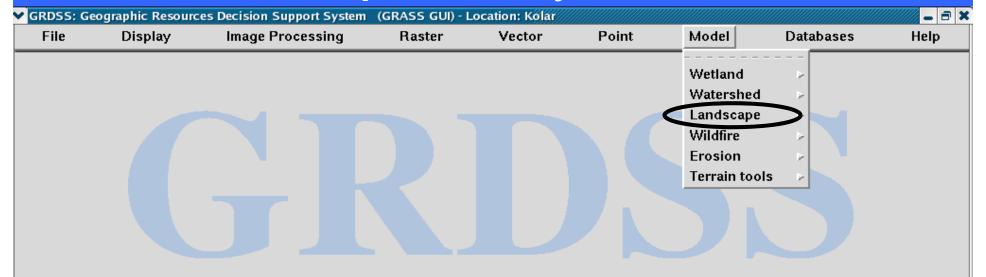
Urban growth map (A) 1973 to 1992, (B) 1992 to 1999, (C) 1999 to 2000, (D) 2000 to 2006.

Changes in urban growth types from 1973 to 2006

Urban Growth Type	1973 - 1992		1992 - 1999		1999 - 2000		2000 - 2006	
	На	%	На	%	На	%	На	%
Developed	6889	1.01	3818	5.60	2876	4.22	32380	4.74
Non-developed	48529	71.3	44034	64.6	42610	62.5	37922	55.54
Water	905	1.33	692	1.01	1434	2.10	952	1.39
Infill	720	1.06	2146	3.15	3088	4.53	4232	6.20
Expansion	5720	8.40	10078	14.8	13110	19.2	16412	24.04
Outlying	11520	16.9	7453	10.9	5054	7.41	5526	8.09
Total	68082	100	68220	100	68172	100	68282	100

- (A) isolated growth,
- (B) linear branching (road/corridor),
- (C) clustered growth.

- Forest fragmentation model shows that Interior forest which was present in the city up to 54 % (in 1973) has come down to 28 % in 2006.
- Urban growth characterised by developed, infill, expansion and outlying types evidently illustrate the phenomenon of urbanising Greater Bangalore.


Landscape analysis is the study of the variation in landscape over multiple spatial and temporal scales (IALE, 1998).

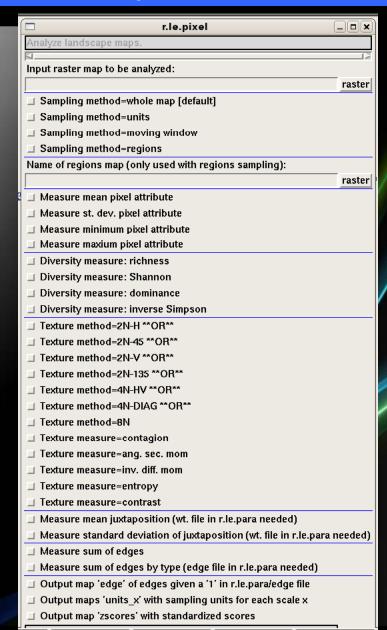
The r.li program in GRASS is written for landscape analysis (Baker, 1992; Baker, 2001).

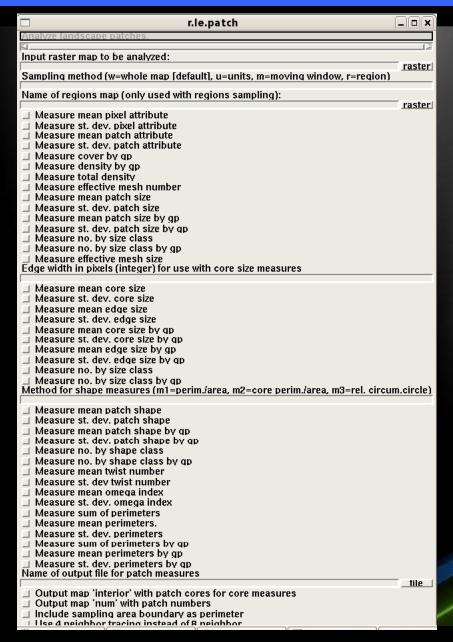
IALE, 1998. IALE mission statement. IALE Bulletin 16(1), 1.

Baker, W.L., Cai, Y., 1992. The r.le programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology 7, 291–302.

Baker, W.L., 2001. The r.le programs: a set of GRASS programs for the quantitative analysis of landscape structure. Department of Geography. University of Wyoming.

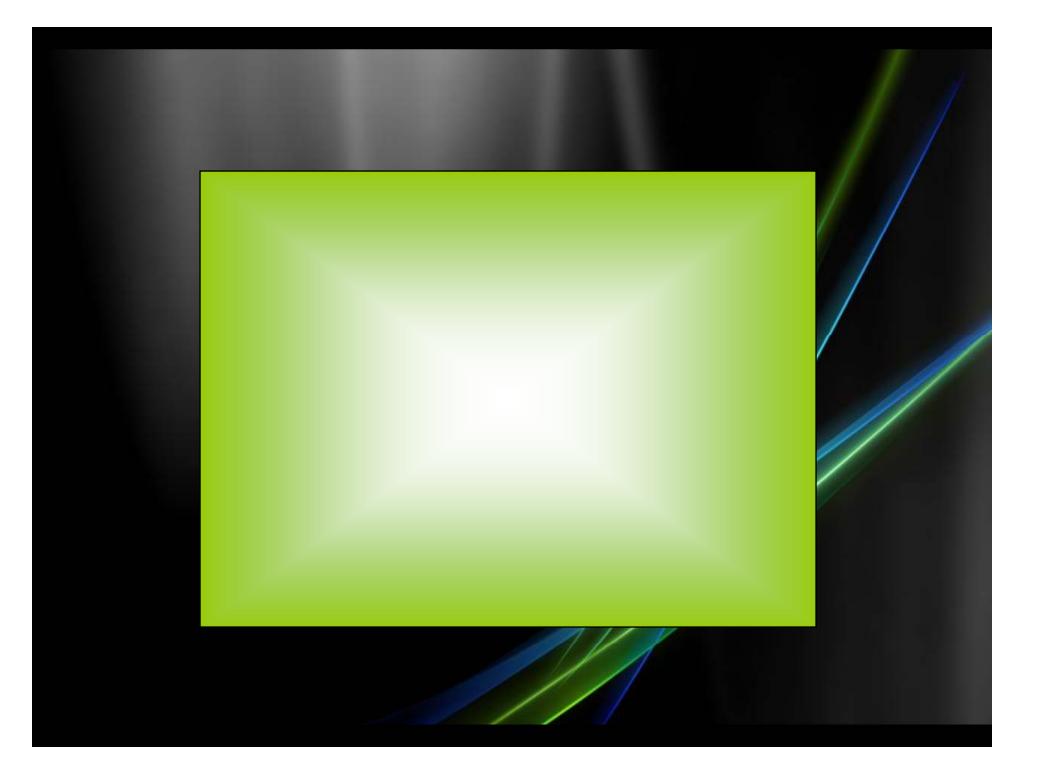
Geographic Resources Decision Support System


GRASS Mirror site: http://wgbis.ces.iisc.ernet.in/grass http://144.16.93.203/grass email: grass@ces.iisc.ernet.in


Beta version - GRDSS3.1

Developed at: Energy and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science,

Bangalore - 560012, India.



Conclusions

- Addition of band extraction, image fusion, forest/urban fragmentation modules and landscape analysis tool
- We advocate more wide publicity and use of FOSS GIS.
- We recommend that FOSS community considers directing their efforts towards a common software development effort within FOS GIS, and establish specific user and developer forums.
- We suggest to have some ideal location or repository for such developmental activities with links to special interest groups who could concentrate on specific research related plug-ins.
- If such unified software development and research efforts could be initiated then we expect great potential to accelerate FOSS4G research in India.

Future directions: Road map to FOSS4G

